જો ઉપવલય $\frac{{{x^2}}}{{27}} + \frac{{{y^2}}}{3} = 1$ પરના બિંદુએથી બનાવેલ સ્પર્શક યામાક્ષોને બિંદુ $A$ અને $B$ માં છેદે તથા $O$ એ ઉંગમબિંદુ હોય તો ત્રિકોણ $OAB$ નું ન્યૂનતમ ક્ષેત્રફળ ચો. એકમ માં મેળવો.
$3\sqrt 3$
$\frac {9}{2}$
$9$
$\frac {9}{\sqrt 3}$
ઉપવલયના પ્રમાણિત સમીકરણ ($y-$અક્ષ પ્રત્યે) માં ગૌણ અક્ષની લંબાઈ $\frac{4}{\sqrt{3}} $ છે. તો ઉપવલય રેખા $x+6 y=8 $ સ્પર્શે છે તો ઉકેન્દ્રીતા મેળવો.
જે ઉપવલયનું કેન્દ્ર ઉગમબિંદુ આગળ હોય અને જે બિંદુઓ $(-3, 1) $ અને $ (2, -2) $ માંથી પસાર થતા ઉપવલયનું સમીકરણ $(a > b)$ .....
ઉપવલય $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ માટે નાભિના યામ, શિરોબિંદુઓ, પ્રધાન અક્ષની લંબાઈ, ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ મેળવો.
જો રેખા $x -2y = 12$ એ ઉપવલય $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ ના બિંદુ $\left( {3,\frac{-9}{2}} \right)$ આગળનો સ્પર્શક હોય તો ઉપવલયના નાભીલંબની લંબાઈ =
બિંદુ $P(3, 4)$ માંથી ઉપવલય $\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1$પર દોરેલા સ્પર્શકો ઉપવલયને બિંદુઓ $A $ અને $B$ આગળ સ્પર્શક છે. ત્રિકોણ નું લંબકેન્દ્ર .....